User Tools

Site Tools


resources:lme

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
resources:lme [2015/06/24 11:19] anthonyresources:lme [2019/05/22 16:08] (current) – external edit 127.0.0.1
Line 26: Line 26:
 http://cran.r-project.org/doc/manuals/r-devel/R-data.html http://cran.r-project.org/doc/manuals/r-devel/R-data.html
  
-''Column names can be given explicitly via the col.names; explicit names override the header line (if present).'' +>Column names can be given explicitly via the col.names; explicit names override the header line (if present).
  
  
Line 32: Line 32:
 http://cran.r-project.org/web/packages/arm/index.html http://cran.r-project.org/web/packages/arm/index.html
  
-''arm: Data Analysis Using Regression and Multilevel/Hierarchical Models 
  
-R functions for processing lm, glm, svy.glm, merMod and polr outputs.''+>''arm: Data Analysis Using Regression and Multilevel/Hierarchical Models'' 
 +
 +>R functions for processing lm, glm, svy.glm, merMod and polr outputs.
  
-**arm** package provides the coefplot() function for plotting the regression coefficient values and std. errors. 
  
 +**arm** package provides the ''coefplot'' function for plotting the regression coefficient values and std. errors.
  
-Need to specify that subjects is a nominal variable, using the //factor// command:+ 
 +Need to specify that subjects is a nominal variable, using the ''factor'' command:
  
 http://www.statmethods.net/input/datatypes.html http://www.statmethods.net/input/datatypes.html
  
-''Tell R that a variable is nominal by making it a factor. The factor stores the nominal values as a vector of integers in the range [ 1... k ] (where k is the number of unique values in the nominal variable), and an internal vector of character strings (the original values) mapped to these integers. ''+>Tell R that a variable is nominal by making it a factor. The factor stores the nominal values as a vector of integers in the range [ 1... k ] (where k is the number of unique values in the nominal variable), and an internal vector of character strings (the original values) mapped to these integers. 
  
 ===== Interpretation of glmer output ===== ===== Interpretation of glmer output =====
Line 49: Line 51:
  
 https://stat.ethz.ch/pipermail/r-sig-mixed-models/2011q1/015590.html https://stat.ethz.ch/pipermail/r-sig-mixed-models/2011q1/015590.html
----- 
-In this case the coefficient corresponds to one of the 
-terms in the model and I would advocate performing a likelihood ratio 
-test comparing the two models 
- 
-<code rsplus> 
-fm <- glmer(SameSite~BreedSuc1+Sex+(1|Bird), family="binomial") 
-fm0 <- glmer(SameSite~Sex+(1|Bird), family="binomial" # the null 
-hypothesis model 
-anova(fm0, fm) 
-</code> 
- 
-Even though the function is called anova it will, in this case, 
-perform a likelihood ratio test (LRT).  It also prints the values of 
-AIC and BIC if you prefer to compare models according to one of those 
-criteria but I prefer using the likelihood ratio for nested models. 
- 
-However, before doing that comparison you should ask yourself whether 
-you want to compare models that have the, apparently unnecessary term 
-for Sex in them.  The way I would approach the model building is first 
-to reduce the model to 
- 
-<code rsplus> 
-fm1 <- lmer(SameSite~BreedSuc1+(1|Bird), family="binomial") 
-</code> 
- 
-You could then compare 
- 
-<code rsplus> 
-anova(fm1, fm) 
-</code> 
- 
-which I presume will give a large p-value for the LRT, so we prefer 
-the simpler model, fm1.  After that, I would compare 
- 
-<code rsplus> 
-fm2 <- lmer(SameSite ~ 1 + (1|Bird), family="binomial") 
-</code> 
- 
  
 +>In this case the coefficient corresponds to one of the
 +>terms in the model and I would advocate performing a likelihood ratio
 +>test comparing the two models
 +>
 +><code rsplus>
 +>fm <- glmer(SameSite~BreedSuc1+Sex+(1|Bird), family="binomial")
 +>fm0 <- glmer(SameSite~Sex+(1|Bird), family="binomial" # the null
 +>hypothesis model
 +>anova(fm0, fm)
 +></code>
 +>Even though the function is called anova it will, in this case,
 +>perform a likelihood ratio test (LRT).  It also prints the values of
 +>AIC and BIC if you prefer to compare models according to one of those
 +>criteria but I prefer using the likelihood ratio for nested models.
 +>However, before doing that comparison you should ask yourself whether
 +>you want to compare models that have the, apparently unnecessary term
 +>for Sex in them.  The way I would approach the model building is first
 +>to reduce the model to
 +><code rsplus>
 +>fm1 <- lmer(SameSite~BreedSuc1+(1|Bird), family="binomial")
 +></code>
 +>You could then compare
 +><code rsplus>
 +>anova(fm1, fm)
 +></code> 
 +>which I presume will give a large p-value for the LRT, so we prefer
 +>the simpler model, fm1.  After that, I would compare
 +><code rsplus>
 +>fm2 <- lmer(SameSite ~ 1 + (1|Bird), family="binomial")
 +></code>
resources/lme.1435159150.txt.gz · Last modified: (external edit)