Witzinia Tech Invent the Future

Concurrent fMRI analysis of part-whole structure and subjective object norms for items from the BOSS (Bank of Standardized Stimuli) data set

Introduction

- Visual system can utilize distinct modes of visual processing^[1,2] for different objects
- Holistic: Global shape, outlines, Gestalt; lateral occipital cortex (LOC)^[3,4]
- **<u>Configural/Analytic</u>**: Local features, details, parts; perhaps intraparietal sulcus (IPS)^[5,6]
- Number of visual parts present within a stimulus influences the type of processing <u>used[5]</u>
- Fewer parts = more holistic
- Many parts = more configural
- Visual stimuli may not be perceived strictly by one process alone^[7]
- Visual Crowding: naturally occurring effect that disrupts recognition of closely-spaced objects presented in the peripheral field^[8,9]
- <u>Crowding also occurs within objects such</u> that those with more component parts experience more crowding and vice versa^[7,8]
- **<u>The BOSS</u>** : Assessments of holistic/analytic modes will make more sense in the context of the covariance structure of the many possible object features.
- The BOSS dataset includes normative ratings of numerous high-level features, which can complement analyses based on local image features.

	Factor		
	1	2	3
amiliarity	.995		
ategory agreement			
sual complexity			
bject agreement		.904	
ewpoint agreement		.656	
anipulability			.747
ame agreement			.323

Goals

- **1.** Identify cortical regions associated with crowding-based behavioral measure
- **2.** Identify cortical regions correlated with key **BOSS** ratings
- **3.** Assess the correlation of the crowdingbased measure with BOSS ratings

Stim

- Ban
- High • <u>Incl</u>
- leve

Neur

- 16 p
- fem
- Obje fixat
- Visua

Model: beta weights for each of the 27 objects **<u>Contrast:</u>** proportional to each participant's critical eccentricity scores

Anthony D. Cate ^{1,2} & Stephanie M. Roldán ¹ **Virginia Tech** ¹ Psychology Department ² Center for Human-Computer Interaction

		Metho
uli k of Standardized S h-resolution photogr udes normalized dat el visual properties (e	timuli (BOSS) ^[10] aphs of real-world objects <u>ta with ratings of semantic and</u> e.g., familiarity, category, comp	Pre• 27• Cod higher-• Noolexity)
oimaging Task participants (9 ale, 7 male) ects presented at tion (TR = 2.26 s) al angle = 4.29°	 Index 1, Type 1 fast event-related design^[12] 785 trials Button press recorded at beginning of TR (fixation stimulus changed color) 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s 1.5 s	 Behaviora Same part Visual ang Labels ent Used chinn center of b 1. Object p various dis field on lef (150 ms) Images ide for accurae experimen Max. eccer
Т	R = 2.26 s	

Neuroimaging

Crowding Measure

RH Lingual

BOSS Norms

Model: parametric modulations (SPM8) for familiarity, visual complexity, viewpoint agreement & manipulability Contrast: betas vs. baseline

Reduced model: no manipulability Effect of familiarity found

processing

images with frontal-parallel viewpoint onverted to grayscale

ormalized for contrast and luminance using SHINE toolbox^[11] s presented using MATLAB and Psychophysics Toolbox

al Task

- ticipants, post-scan $s = 7.33^{\circ}$ tered for all objects
- rest, fixated cross at
- black screen
- presented briefly at
- stances in peripheral
- ft or right side of screen
- entified aloud; coded cy in real-time by nter
- ntricity = 31.02°

- 2. <u>Incorrect</u>: Image moved 75 px (3.7°) closer to fixation when it next appeared on same side of screen
- Correct: Location on screen recorded as critical eccentricity
- Objects correctly identified on both sides of screen before being removed from the set

Behavioral

Discussion

Behavioral

Familiarity inversely correlated with critical eccentricity

Limitations

- Critical eccentricity contrast restricted to mutually exclusive activation, i.e. betas reflect correlation with entire range
- Small number of items compared to total BOSS (27), although representive sample:

Future directions

- Hemisphere effects
- Principal components regressions

References

 Tanaka & Farah (1993). Parts and wholes in face recognition. <i>Exp. Psych.</i>, 46, 225. Pomerantz, Sager, & Stoever (1977). Perception of wholes and of their component parts: some configural superiority effects. <i>Exp. Psych.</i>, 3, 422. 		
[3] Kourtzi & Kanwisher (2001). Representation of perceived object shape by the human lateral occipital complex. Science (N.Y.), 293, 1506.		
[4] Kubilius, Wagemans, & Op de Beeck (2011). Emergence of perceptual gestalts in the human visual cortex: the case of the configural-superiority effect. Psych. Science, 22, 1296.		
[5] Xu & Chun (2007). Visual grouping in human parietal cortex. Proceedings of National Academy of Sciences, USA, 104, 18766.		
[6] Lerner, Hendler, & Malach (2002). Object-completion effects in the human lateral occipital complex. Cerebral Cortex, 12, 163.		
[7] Martelli, Majaj, & Pelli (2005). Are faces processed like words? A diagnostic test for recognition by parts. Journal of Vision, 5.		
[8] Pelli & Tillman (2008). The uncrowded window of object recognition. <i>Nature Neuro.</i> , 1129.		
[9] Whitney & Levi (2011). Visual crowding: a fundamental limit on conscious perception and object recognition. <i>Trends in Cognitive Sciences, 15</i> , 160.		
[10] Brodeur et al. (2010). The Bank of Standardized Stimuli (BOSS), a new set of 480 normative		
photos of objects to be used as visual stimuli in cognitive research. PLoS ONE, 5.		
[11] Willenbockel, Sadr, Fiset, Horne, Gosselin, & Tanaka (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42, 671.		
[12] Aguirre (2007). Continuous carry-over designs for fMRI. <i>NeuroImage</i> , 35, 1480.		
[13] Haxby et al. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. <i>Science</i> , 293, 2425.		
[14] Yovel, Yovel, & Levy (2001). Hemispheric asymmetries for global and local visual perception:		
Effects of stimulus and task factors. Exp. Psych., 27, 1369.		
Contact: Anthony Cate		
acate@vt.edu		